Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Medicina (Kaunas) ; 59(1)2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2200506

ABSTRACT

Bilateral COVID-19 pneumonia is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and usually leads to life-threatening acute respiratory distress syndrome (ARDS). Treatment of patients with ARDS is difficult and usually involves protective mechanical ventilation and various types of recruitment maneuvers. A segmental lung recruitment maneuver by independent lung ventilation has been described as a successful recruitment maneuver in patients with lobar pneumonia, and may, therefore, be useful for the treatment of patients with bilateral COVID-19 pneumonia complicated by ARDS in the critical phase of the disease when all other therapeutic options have been exhausted. The aim of this case series was to present a case report of four mechanically ventilated patients with severe bilateral COVID-19 pneumonia complicated by ARDS using the segmental lung recruitment maneuver. The effect of the segmental lung recruitment maneuver was assessed by the increase in PaO2/FiO2 ratio and the lung ultrasound (LUS) scoring system (0 points-presence of sliding lungs with A-lines or one or two isolated B-lines; 1 point-moderate loss of lung ventilation with three to five B lines; 2 points-severe loss of lung ventilation with more than five B lines (B pattern); and 3 points-lung consolidation) determined 12, 24, and 48 h after segmental lung recruitment. In three of four patients with bilateral COVID-19 pneumonia complicated by ARDS, an increase in the PaO2/FiO2 ratio and an improvement in the LUS scoring system were observed 48 h after segmental lung recruitment. In conclusion, the segmental lung recruitment maneuver in patients with bilateral COVID-19 complicated by ARDS is an effective method of lung recruitment and may be a useful treatment method.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/complications , SARS-CoV-2 , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Lung/diagnostic imaging , Respiration, Artificial/methods
2.
Viruses ; 14(9)2022 09 04.
Article in English | MEDLINE | ID: covidwho-2010312

ABSTRACT

Studies assessing the dynamics and duration of antibody responses following SARS-CoV-2 infection or vaccination are an invaluable tool for vaccination schedule planning, assessment of risk groups and management of pandemics. In this study, we developed and employed ELISA assays to analyze the humoral responses to Nucleocapsid and Spike proteins in vaccinated health-care workers (HCW) and critically ill COVID-19 patients. Sera of more than 1000 HCWs and critically ill patients from the Clinical Hospital Center Rijeka were tested across a one-year period, encompassing the spread of major SARS-CoV-2 variants of concern (VOCs). We observed 97% of seroconversion in HCW cohort as well as sustained anti-Spike antibody response in vaccinees for more than 6 months. In contrast, the infection-induced anti-Nucleocapsid response was waning significantly in a six-month period. Furthermore, a substantial decrease in vaccinees' anti-Spike antibodies binding to Spike protein of Omicron VOC was also observed. Critically ill COVID-19 patients had higher levels of anti-Spike and anti-Nucleocapsid antibodies compared to HCWs. No significant differences in anti-Spike and anti-Nucleocapsid antibody levels between the critically ill COVID-19 patients that were on non-invasive oxygen supplementation and those on invasive ventilation support were observed. However, stronger anti-Spike, but not anti-Nucleocapsid, antibody response correlated with a better disease outcome in the cohort of patients on invasive ventilation support. Altogether, our results contribute to the growing pool of data on humoral responses to SARS-CoV-2 infection and vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Cohort Studies , Critical Illness , Croatia , Health Personnel , Humans , Nucleocapsid Proteins , Spike Glycoprotein, Coronavirus
3.
Sci Rep ; 12(1): 14906, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2008315

ABSTRACT

The coronavirus disease (COVID-19) pandemic caused unprecedented research activity all around the world but publications from Central-Eastern European countries remain scarce. Therefore, our aim was to characterise the features of the pandemic in the intensive care units (ICUs) among members of the SepsEast (Central-Eastern European Sepsis Forum) initiative. We conducted a retrospective, international, multicentre study between March 2020 and February 2021. All adult patients admitted to the ICU with pneumonia caused by COVID-19 were enrolled. Data on baseline and treatment characteristics, organ support and mortality were collected. Eleven centres from six countries provided data from 2139 patients. Patient characteristics were: median 68, [IQR 60-75] years of age; males: 67%; body mass index: 30.1 [27.0-34.7]; and 88% comorbidities. Overall mortality was 55%, which increased from 2020 to 2021 (p = 0.004). The major causes of death were respiratory (37%), cardiovascular (26%) and sepsis with multiorgan failure (21%). 1061 patients received invasive mechanical ventilation (mortality: 66%) without extracorporeal membrane oxygenation (n = 54). The rest of the patients received non-invasive ventilation (n = 129), high flow nasal oxygen (n = 317), conventional oxygen therapy (n = 122), as the highest level of ventilatory support, with mortality of 50%, 39% and 22%, respectively. This is the largest COVID-19 dataset from Central-Eastern European ICUs to date. The high mortality observed especially in those receiving invasive mechanical ventilation renders the need of establishing national-international ICU registries and audits in the region that could provide high quality, transparent data, not only during the pandemic, but also on a regular basis.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Sepsis , Adult , COVID-19/epidemiology , COVID-19/therapy , Humans , Intensive Care Units , Male , Oxygen , Registries , Respiration, Artificial , Respiratory Insufficiency/epidemiology , Respiratory Insufficiency/therapy , Retrospective Studies , SARS-CoV-2 , Sepsis/epidemiology
4.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911629

ABSTRACT

While SARS-CoV-2 detection in sputum and swabs from the upper respiratory tract has been used as a diagnostic tool, virus quantification showed poor correlation to disease outcome and thus, poor prognostic value. Although the pulmonary compartment represents a relevant site for viral load analysis, limited data exploring the lower respiratory tract is available, and its association to clinical outcomes is relatively unknown. Using bronchoalveolar lavage (BAL) and serum samples, we quantified SARS-CoV-2 copy numbers in the pulmonary and systemic compartments of critically ill patients admitted to the intensive care unit of a COVID-19 referral hospital in Croatia during the second and third pandemic waves. Clinical data, including 30-day survival after ICU admission, were included. We found that elevated SARS-CoV-2 copy numbers in both BAL and serum samples were associated with fatal outcomes. Remarkably, the highest and earliest viral loads after initiation of mechanical ventilation support were increased in the non-survival group. Our results imply that viral loads in the lungs contribute to COVID-19 disease severity, while blood titers correlate with lung virus titers, albeit at a lower level. Moreover, they suggest that BAL SARS-CoV-2 copy number quantification at ICU admission may provide a predictive parameter of clinical COVID-19 outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Illness , Humans , Lung , Viral Load
5.
BMC Med ; 20(1): 102, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1724486

ABSTRACT

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Subject(s)
COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Viruses ; 13(12)2021 12 02.
Article in English | MEDLINE | ID: covidwho-1554951

ABSTRACT

During COVID-19 pandemics, the availability of testing has often been a limiting factor during patient admissions into the hospital. To circumvent this problem, we adapted an existing diagnostic assay, Seegene Allplex SARS-CoV-2, into a point-of-care-style direct qPCR (POC dqPCR) assay and implemented it in the Emergency Department of Clinical Hospital Center Rijeka, Croatia. In a 4-month analysis, we tested over 10,000 patients and demonstrated that POC-dqPCR is robust and reliable and can be successfully implemented in emergency departments and similar near-patient settings and can be performed by medical personnel with little prior experience in qPCR.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Emergency Service, Hospital , Point-of-Care Testing , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , Croatia/epidemiology , Humans , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
8.
Bosn J Basic Med Sci ; 21(1): 93-97, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1063537

ABSTRACT

In many areas of the world, critical care providers caring for COVID-19 patients lacked specific knowledge and were exposed to the abundance of new and unfiltered information. With support from the World Health Organization, we created a multimodal tele-education intervention to rapidly share critical care knowledge related to COVID-19 targeting providers in a region of Southeastern Europe. We delivered 60-minute weekly interactive tele-education sessions over YouTubeTM between March 2020 and May 2020, supplemented by a dedicated webpage. The intervention was reinforced using a secure social media platform (ViberTM), providing continuous rapid knowledge exchange among faculty and learners. A high level of engagement was observed, with over 2000 clinicians participating and actively interacting over a 6-week period. Surveyed participants were highly satisfied with the intervention. Tele-education interventions using social media platforms are feasible, low-cost, and effective methods to share knowledge during the COVID-19 pandemic.


Subject(s)
Access to Information , COVID-19/epidemiology , Critical Care/organization & administration , Education, Medical, Continuing/methods , Inservice Training/methods , Pandemics , Social Media , Europe , Humans , Surveys and Questionnaires , World Health Organization
9.
Signa Vitae ; 1(16):1-4, 2020.
Article in English | ELSEVIER | ID: covidwho-679193

ABSTRACT

SepsEast is an enthusiastic intensivists group initiative launched in 2012, with the aim to facilitate clinical and research activities in the region. Through its actions and with the motto « Together we win, divided we are slow! » several joint research projects in the fields of perioperative medicine, fluid therapy, cardiovascular monitoring and support have been conducted. In the light of the COVID-19 pandemic, the SepsEast community is aware of its mission and is ready to take the challenge. This is mirrored by several educational, clinical and research activities including the development of a COVID-19 Registry;and an observational clinical study on cytokine adsorption in COVID-19 patients. The current pandemic should be our lesson on how to manage the global threat of infectious disease and to develop strategies for effective diagnostic and therapeutic procedures. Hopefully, the SepsEast community will contribute to these developments and scientific advances in general.

SELECTION OF CITATIONS
SEARCH DETAIL